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Abstract: Birth weight and gestational age are important measures of a newborn’s intrinsic health,

serving both as outcome measures and explanatory variables in health studies. The measures are

highly correlated but occasionally inconsistent. We anticipate that health researchers and other

scientists would be helped by summary indexes of birth weight and gestational age that give more

precise indications of whether the birth outcome is healthy or not. We propose a pair of indexes that

we refer to as the birth normalcy index or BNI and birth discrepancy index or BDI. Both indexes

are simple functions of birth weight and gestational age and in logarithmic form are orthogonal

by construction. The BNI gauges whether the birth weight and gestational age combination are

in a normal range. The BDI gauges whether birth weight and gestational age are consistent. We

present a three-component mixture model for BNI, with the components representing premature,

at-risk and healthy births. The BNI distribution is derived from a stochastic model of fetal devel-

opment proposed by Whitmore and Su (2007) and takes the form of a mixture of inverse Gaussian
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distributions. We present a non-central t-distribution as a model for BDI. BNI and BDI are also

well suited for making comparisons of birth outcomes in different reference populations. A simple

z-score and t-score are proposed for such comparisons. The BNI and BDI distributions can be

estimated for births in any reference population of interest using threshold regression.
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1. Introduction

Researchers in the field of perinatal health have long recognized the dual importance of birth

weight and gestational age in judging the health of newborns. Many health and epidemiological

studies make use of one or both measures, either as outcome measures or as key explanatory

variables. National statistical systems use summaries of one or both measures in reporting on infant

health and mortality. The World Health Organization (1995) recommends use of birth weight,

adjusted by gestational age, to assess prenatal and postnatal health.

Medical concerns with unusually small (or large) birth weights and with preterm births have a

long history and a huge literature. Conventionally, births with weights under 2,500 grams or larger

than 4,500 grams, or terms under 37 weeks, are judged to be at higher risk of infant death, congen-

ital malformations, mental retardation, and other physical and neurological impairments. Infants

who are small or large for their gestational age (abbreviated SGA and LGA, respectively) are also

at increased risk of neonatal morbidity and mortality, as well as health complications in adulthood.

Definitions of these terms vary somewhat. A common definition of SGA is a birth below the 10th

percentile weight for its gestational age. Symmetrically, LGA is a birth weight above the 90th

percentile for its gestational age. Intrauterine growth restriction (IUGR) and macrosomia are also

troublesome conditions. IUGR refers to a broad class of abnormal anatomical or functional dis-

orders that manifest themselves in restricted fetal growth. It is important to recognize that only a

subset of SGA infants are afflicted by IUGR. A sizable proportion of SGA infants are constitution-

ally small but are otherwise normal. Macrosomia refers to a neonate who is abnormally large and,

often, unhealthily so. The implications of these birth conditions have an extensive literature. For

SGA, for example, see Saenger, Czernichow, et al (2007) and Argente, Mehls and Barrios (2010).

For LGA, see Kerényi, Tamás, Kivimäki et al (2009). For IUGR, see Resnik (2002), Garite,

Clark and Thorp (2004), Haram, Svendsen and Myking (2007), and Chauban, Gupta, Hendix, and

Berghella (2009). For macrosomia, see Stotland, Caughey, Breed, and Escobar (2004), Chauhan,
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Grobman, Gherman, et al (2005), Zhang, Decker, Platt, and Kramer (2008), and Henriksen (2008).

For an overview of these conditions for U.S. births, background studies and research, and ac-

cess to available official data, refer to the website of the National Center for Health Statistics at

www.cdc.gov/nchs/fastats/births.htm.. The inconsistency of birth weight and gestational age

that is reflected in indicators such as SGA and LGA may arise because of abnormalities in fetal

development or inaccurate measurements of gestational ages. Many researchers have attempted to

address the problem of incorrect gestational ages. See, for example, Platt, Abrahamowicz, Kramer,

et al (2001), Tentoni, Astolfi, Pasquale, and Zonta (2004), Parker and Schenker (2007), and Ananth

(2007).

An early approach to modeling birth weights was taken by Wilcox and Russell (1983) who

proposed a two-component mixture distribution for birth weight. One component consists of a

‘predominant distribution’ that has a normal density function and represents normal births. The

second component is a ‘residual distribution’ with an unspecified form, representing low weight

births. Taking a very different tack, Whitmore and Su (2007) consider a birth outcome to be

determined by stopping a stochastic process representing the fetal development process. They

discuss the joint modeling of birth weight and gestational age but set the full topic aside and focus

on birth weight alone, making reference to common difficulties with the reliability of gestational

age data and the challenges of joint modeling. One of the Whitmore and Su models for birth weight

is a two-component mixture distribution in which the components correspond to ‘normal’ and

‘abnormal’ births. They assume a Wiener diffusion process as the underlying stochastic process for

fetal development and, consequently, the two components of their mixture have inverse Gaussian

distributions. The authors fit their models using a 4% systematic sample of U.S. live births in

2002; a total of 160,577 births. They provide interpretations of their findings and discuss practical

implications of their work. These earlier models form the point of departure for the ideas and

results we present here.
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2. Constructing Orthogonal Birth Normalcy and Discrepancy Indexes

In this research, we convert the bivariate information in the birth weight and gestational age

for a newborn into two indexes that are statistically orthogonal and therefore convey uncorrelated

information about the birth outcome. We refer to these two indexes as the birth normalcy index,

or BNI for short, and the birth discrepancy index, or BDI for short. The BNI roughly describes

whether the infant’s birth weight and gestational age, taken together, are abnormal. The BDI

describes the extent to which birth weight and gestational age are inconsistent.

2.1 Definitions of the Indexes. LetW andA denote the birth weigh (in kilograms) and gestational

age (in weeks) of a newborn. The formulas for our two indexes are as follows:

BNI =
√
WWA and BDI =

√
W

WA

, where WA = κAα. (1)

Notation WA represents an estimate of birth weight that is derived from the newborn’s gestational

age A, using the power function shown in (1). We will refer to WA as the imputed birth weight

because it can be used as a surrogate for the actual birth weight if we only know the infant’s ges-

tational age. As WA is a re-expression of gestational age on a weight scale, BNI is essentially a

geometric mean of birth weight and gestational age. Correspondingly, BDI is the square-root of

the ratio of these two measures. The power function defining the imputed birth weight depends

on two constants, κ and α. These are empirical constants derived from birth data for the reference

population. The constants are chosen in such a manner that measure WA mimics birth weight W .

The rationale for choosing these particular mathematical forms for the indexes and imputed birth

weight and the numerical determination of the two constants, κ and α, will emerge in the subse-

quent development. We note, however, that our choice of exponent α ensures that the logarithms

of these indexes are uncorrelated and, hence, our claim that BNI and BDI are orthogonal.

In definition (1), we assume that the imputed birth weightWA is a power function of gestational

age A. Clinical evidence about the fetal development process supports this assumption of a power
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function. The functional relationship between fetal weight and fetal age, as well as other fetal

body measurements, has been the subject of much study. Tables of fetal weight percentiles at

different fetal ages have been prepared to guide clinicians in this matter (see, for example, Doubilet,

Benson, Nadel and Ringer, 1997). These tables show evidence of a power relationship between

fetal weight and fetal age. If we use u and r to denote fetal weight and fetal age (to distinguish fetal

measurements from those of the newborn), then the evidence suggests a relationship of the form

u = κrα, where κ is a proportionality constant and α is the age exponent. We have explored the

best choice for exponent α by regressing ln(u) on ln(r) based on median fetal weights at different

fetal ages for males and females combined, as reported in Doubilet, Benson, Nadel and Ringer

(1997, p. 245). The fitted exponent varies somewhat with the range of fetal ages being considered.

For fetal ages ranging from 25 to 43 weeks, the best-fitting exponent α is close to 3.5. For fetal

ages over the narrower range of 35 to 39 weeks, α is close to 3. Thus, as the fetus approaches birth,

the power relationship between its weight and age is roughly cubic. In the next section, we will

establish an empirical estimate for α in power function (1) that is close to 3.

2.2 Setting the Empirical Constants in the Imputed Birth Weight. The empirical constants

κ and α in the function WA = κAα need to be specified for the reference population of births.

We will choose these constants so the distribution of the imputed birth weight WA imitates the

distribution of birth weight W in the reference population. More specifically, we will choose ln(κ)

and α as the solutions of the two moment equations that equate the sample means and standard

deviations of ln(W ) and ln(WA), where ln(WA) = ln(κ) + α ln(A). To illustrate the procedure,

we employ the same 4% systematic sample of US births in 2002 used by Whitmore and Su (2007).

Birth weight in these data is measured in kilograms and gestational age in weeks. The estimates of

ln(κ) and α that equate the means and standard deviations of W and WA are −10.633 and 3.2314,

respectively. The corresponding value of κ is 24.105 × 10−6. With these estimates, we obtain

the descriptive statistics for ln(W ) and ln(WA) presented in panel (a) of Figure 1. The means
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and standard deviations are identical by construction. Comparing the first and third quartiles,

as well as the minimum and maximum values, we see that the distribution of ln(W ) is slightly

stretched away from the center toward the tails, relative to ln(WA). Kurtosis and skewness are

also somewhat larger for ln(W ) than its counterpart ln(WA). Although not identical, the pairs of

descriptive statistics for ln(W ) and ln(WA) match quite well. The fact that gestational age is only

recorded to the nearest week has some influence on the descriptive statistics ofWA. To give a visual

impression of the match of ln(W ) and ln(WA), panels (b) and (c) of Figure 1 show histograms of

their respective distributions, plotted to the same scale. The histograms look well matched, except

for the greater kurtosis of ln(W ).

The BNI and BDI indexes may be expressed in the following log-linear form.

ln BNI =
1

2
[ln(W ) + ln(WA)] (2)

ln BDI =
1

2
[ln(W )− ln(WA)] (3)

These expressions for ln(BNI) and ln(BDI) are an equally weighted sum and difference of ln(W )

and ln(WA), respectively. As we have chosen the empirical constant α so ln(W ) and ln(WA) have

the same standard deviation, the construction ensures that ln(BNI) and ln(BDI) are uncorrelated

and, hence, are orthogonal. The logarithms of the indexes are essentially first and second principal

components of the logarithmic birth outcomes ln(W ) and ln(WA).

3. Statistical Modeling of BNI and BDI.

In the last section, we proposed a pair of orthogonal BNI and BDI indexes to capture the infor-

mation in birth weightW and gestational ageA. In this section, we build statistical models for BNI

and BDI on the assumption that the joint birth outcome (W,A) occurs when a fetal development

process is ‘stopped’ by reaching a birthing boundary. We show later that the models provide an

excellent fit for US birth data and, presumably, for birth data from other reference populations.
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3.1 Birth as a Stopping Event in a Fetal Development Process. We extend the Whitmore and

Su birth-weight model to describe the joint outcome of birth weight W and gestational age A.

We alter their notation somewhat to suit our purposes. In their formulation, fetal development

is described by a two-dimensional process {U(r), D(r)}, where U(r) denotes the fetal weight at

fetal age r and D(r) denotes an unspecified latent measure of fetal physiological development

at age r. By definition, both measures are zero at conception. We use the term ‘fetus’ here for

convenience, avoiding the more precise distinction between an embryo and fetus, with the latter

being the designation after about 20 weeks of development. In their model, birth is a stopping event

that is triggered when fetal physiological development first reaches a birthing boundary. They take

the boundary to be a fixed development level b. In other words, birth occurs when the development

process D(r) reaches level b for the first time. This stopping event ’freezes’ both the gestational

age A and the birth weight W , where the latter is given by W = U(A).

Whitmore and Su assumed that the latent fetal development process, expressed as a function

of fetal weight, follows a Wiener diffusion process with mean parameter µ > 0 and unit variance.

The unit variance was justified by the fact that the fetal development process is latent and, hence,

unobserved. By this construction, birth weight W is the first hitting time of a boundary b by a

Wiener process and therefore has an inverse Gaussian distribution parameterized by µ and b. If

fetal weight u and fetal age r were exactly related by a power function of the form u = κrα, as we

have just discussed, then the claim that the fetal development process follows a Wiener diffusion

implies that both birth weight W and imputed birth weight WA = κAα would have the same

inverse Gaussian distribution. It seems reasonable, therefore, to take BNI for a given birth as a

random draw from an inverse Gaussian distribution because BNI is a geometric mean of W and

WA, with variable WA mimicking variable W . Our modeling of BNI starts with this assumption.

We will show that the assumption is well supported by the data.

3.2 A Brief Overview of the Stopping Time Distribution. As the stopping time in our model has
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an inverse Gaussian distribution, we give a brief overview of this distribution family for later use.

An inverse Gaussian random variable S has the following probability density function (p.d.f.) and

survival function (s.f.), denoted by f and F , respectively.

f(s|b, µ) =
b√

2πs3
exp

[
−(b− µs)2

2s

]
(4)

F (s|b, µ) = Φ

[
(b− µs)√

s

]
− exp(2bµ)Φ

[
−(b+ µs)√

s

]
(5)

Here Φ(·) is the cumulative distribution function (c.d.f.) of the standard normal distribution. The

mean (m), coefficient of variation (c), and mode of an inverse Gaussian distribution are related to

the Wiener mean parameter µ > 0 and boundary b as follows:

m =
b

µ
, c =

1√
bµ
, mode = m

[(
1 +

9c4

4

)1/2

− 3c2

2

]
(6)

An inverse Gaussian distribution is always right skewed so its mode is smaller than its mean.

The skewness is less pronounced the smaller is the coefficient of variation. We will also use the

following chi-square property of an inverse Gaussian random variable S (see Shuster 1968).

(b− µS)2

S
=

1

c2

(√
m
S
−
√
S

m

)2

∼ χ2
1 (7)

Statistical theory shows that the square of a standard normal random variable has a chi-square

distribution with one degree of freedom. In (7), we see that a similar standardization for an inverse

Gaussian random variable gives the same result. In section 4, we will use this property to define a

z-score for BNI.

3.3 BNI Model and Estimation. Births are not governed by a single stochastic process and

birthing boundary. Abnormalities of various kinds and degrees can affect the fetal development
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process, the birthing boundary, or both. This variety of possible development paths implies that a

model for the distribution of BNI will be a statistical mixture with two or more components – one

component for each type or category of birth experience. Each birth is unique but this view is not

helpful from a statistical perspective. As a practical compromise, we seek that smallest number of

categories that accurately captures the essential variety. The main component of the mixture will

represent that majority of births in which the fetal development process and birth event follow a

healthy natural course. This component is the ‘predominant distribution’ of Wilcox and Russell

(1983) or the normal mixture component of Whitmore and Su (2007). Previous models have as-

sumed that abnormal births constitute a residual component (Wilcox and Russell) or an abnormal

second component of the mixture model (Whitmore and Su). We will depart from these previous

models by assuming that the mixture distribution for BNI has three components that are associated

with three categories or grades of births. Preliminary analysis shows that two components are not

sufficient and, as we show later, three components provide a very good fit to U.S. birth data. In ad-

dition, the three components have very sensible interpretations in terms of the basic variety found

in birth outcomes. We will use random variable J , with possible outcomes j = 1, 2, 3, to denote the

category of a birth. The categories are defined solely by the fitted three-component mixture model.

Because our classification of births is based on a fitted model, the categories are self-calibrating

and do not adhere to any externally imposed definitions. We will give the categories a practical

interpretation when we discuss the fitted model. For the moment, as simple labels, we refer to

categories 1, 2, and 3 as healthy, at-risk, and premature births, respectively. These labels serve as

convenient handles but oversimplify the underlying reality, as we will show.

The category of a birth has a probability distribution pj = Pr(J = j), j = 1, 2, 3, where

p1 + p2 + p3 = 1. We assume that, whichever of these three categories applies to a fetus, the

development path will follow a Wiener process and eventually hit a birthing barrier, producing the

birth weight W at gestational age A. Each of these processes, however, will have its own mean
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and boundary parameters, namely, parameters µj and bj for categories j = 1, 2, 3. Letting fj(BNI)

denote the p.d.f. of BNI for birth category j = 1, 2, 3, it follows that the overall p.d.f. of BNI

for our reference population is the following three-component mixture of inverse Gaussian density

functions.

f(BNI) = p1f1(BNI) + p2f2(BNI) + p3f3(BNI) (8)

The preceding notation suppresses the dependence of the functions on their process and boundary

parameters, as well as on covariates.

Panel (a) of Table 1 shows the fitted BNI mixture model for the 159,363 non-missing birth

outcomes in the 4% sample of US births in 2002. The model parameters were estimated using

the method of maximum likelihood, implemented with a numerical gradient routine in Stata. The

likelihood function to be maximized is the mathematical product of the likelihood values calculated

from (8). The table presents estimates of the mean mj , coefficient of variation cj , modej , and

mixture probability pj for each of the components j = 1, 2, 3 of the BNI mixture model. The table

also shows the estimates of the boundary bj and Wiener mean drift µj of the latent Wiener process

for the three components. No covariates are taken into account in this implementation, but will

be considered later. The fitted model can be interpreted as the estimated population distribution of

BNI for US births in 2002.

The fitted model indicates that BNI has an average value of 3.433 for healthy births (category

1), a lower average at 2.933 for at-risk births (category 2), and the lowest mean at 1.641 for pre-

mature births (category 3). The coefficients of variation are 10%, 19% and 59%, respectively. The

estimated modal values of BNI in each category are lower than their corresponding means, with a

huge separation of the mode and mean for premature births. As one check on the fitted model, we

note that the modal outcome for birth weight and gestational age in the data set are 3.4 kilograms

and 39 weeks, respectively, with weight truncated to a tenth of a kilogram. This outcome is the
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benchmark for healthy births. The BNI calculation for this modal outcome is

BNI =
√
WWA =

√
3.4(3.338) = 3.37, whereWA = κAα = (24.105×10−6)(393.2314) = 3.338

This BNI number closely matches the estimated mode of 3.383 for healthy births (category 1) in

panel (a) of Table 1. Finally, in the table, we see that the proportions of births falling in each

category are estimated to be 0.775, 0.198 and 0.027, respectively.

A graphical assessment of the fit of the BNI mixture model (8) is shown in panel (a) of Figure

2. The figure plots the empirical cumulative distribution function (c.d.f.) against the fitted c.d.f. for

the model. The fit is very good, with barely noticeable departures of the plot from the diagonal line.

The maximum absolute difference in the functions is 0.0084. The plot has a slightly saw-toothed

pattern because gestational age is only reported to the nearest week. The fitted mixture model takes

no account of covariates. As covariates produce significant differences in mixture components of

the BNI models as well as their mixture probabilities, the very small departures seen here are to be

expected. We subsequently examine the effects of covariates on the BNI mixture model.

3.4 BDI Model and Estimation. The value of BDI for a birth captures inconsistencies between

birth weight and gestational age. We have already noted for an idealized birthing process that

fetal weight u and fetal age r would progress in an approximate power relationship, leading to

the corresponding power relationship W = κAα for birth weight and gestational age. Some de-

parture from this exact power relationship is expected. First, natural variability is expected in the

relationship. Second, gestational age is prone to measurement error. Finally, medical anomalies

in the fetal development process can cause fetal weight and fetal age to become misaligned in a

variety of ways. Putting all of these sources of variability together, we posit a distribution for BDI

that is, in essence, a noise distribution. We expect the distribution to be nearly symmetrical but

12



somewhat over-dispersed relative to a normal distribution. We have therefore chosen a non-central

t-distribution as a model for BDI.

We have fitted a non-central t-distribution to BDI for the 4% sample of US births in 2002

using the method of maximum likelihood. The results appear in panel (b) of Table 1. The non-

central t-distribution has three parameters, namely, a location or non-centrality parameter (`), a

scale parameter (σ), and its degrees of freedom (df). As the mean values of the logarithms of

birth weight W and imputed birth weight WA have been aligned purposely, we expect the non-

centrality parameter ` of this t-distribution to be very close to 1. Indeed, its estimate is 1.0024 for

this data set. The scale parameter σ describes the dispersion of BDI in the population of births.

The estimate of σ for US births in 2002 is .07561, which indicates that most outcomes of BDI will

lie within about 8% of its central location near 1. The estimated degrees of freedom of the fitted

non-central t-distribution are 5 (precisely, 5.056). This number supports our presumption that BDI

is over-dispersed.

A graphical assessment of the fit of a non-central t distribution to BDI for our data set is shown

in panel (b) of Figure 2. As for the BNI model, the figure plots the empirical c.d.f. against the

fitted c.d.f. for the model. Again, the fit is very good, with barely noticeable departures of the plot

from the diagonal line. The maximum absolute difference in the functions is 0.0072.

4. Practical Applications of BNI and BDI

The practical value of the proposed indexes lies in their usefulness as both outcome measures

and explanatory variables in perinatal research, for clinical assessments of neonatal health, and for

statistical analysis, interpretation, and reporting on the condition of newborns. We begin in this

section with the interpretation of the indexes and their relation to such conventional constructs as

SGA, LGA and IUGR. We then discuss their use in comparing birth outcomes in different reference

populations. Finally, we demonstrate how to use threshold regression to study the relation of the

indexes to key covariates that define important subpopulations of interest.
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4.1 Interpreting the Indexes. Our interpretation of the indexes starts with BNI. The partial prob-

ability density functions pjfj(BNI) of the BNI mixture model, corresponding to birth categories

j = 1, 2, 3, are plotted in panel (a) of Figure 3. The parameter estimates for these densities are

presented in panel (a) of Table 1, including estimates of the boundary bj and mean drift µj of the

fetal development process for j = 1, 2, 3. Recall that the fetal development process for each cat-

egory of birth has a unit variance by definition. We note that the boundary value and mean drift

both decline as we move from the healthy to premature birth categories. These patterns produce

the falling mean values and rising coefficients of variation seen in panel (a) of Table 1.

The dominant density function, representing 77% of births, corresponds to the healthy category

(j = 1) and has the appearance of a normal density. The secondary density function corresponds

to the at-risk category (j = 2) and represents 20% of births. This secondary density overlaps

substantially with that of healthy births. With this observation, it is the moment to explain what

the label ‘at risk’ encompasses. Recall that each category of birth arises from a separate fetal

development process and birthing boundary. The at-risk category is one that has a shallower drift

and lower birthing boundary than healthy births. This category covers a range of risky scenarios,

from newborns at risk of being moderately premature to newborns of normal weight and gestational

age who have other physiological problems that have manifested themselves in a more erratic fetal

development trajectory. The latter may include significant congenital malformations, chromosomal

damage, and other prenatal anomalies that place them at risk for later health problems. The minor

density function in panel (a) of Figure 3 corresponds to the premature birth category (j = 3) and

accounts for about 3% of births. It clearly represents moderately to severely premature newborns.

The underlying development process for these infants has a boundary closer to zero than for at-risk

births and a very shallow mean drift. These birth outcomes are therefore relatively volatile. This

last fact is confirmed by the huge coefficient of variation for the premature category.

The mixture probabilities pj, j = 1, 2, 3,may be considered as prior probabilities in the Bayesian
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sense. They represent the chances that a birth will be in each of these categories when we have

no knowledge of the infant’s weight or gestational age. Bayes theorem, in conjunction with mix-

ture model (8), can then be used to calculate the posterior probability that a birth lies in a given

category, conditional on its BNI value, as follows.

pj(BNI) =
pjfj(BNI)
f(BNI)

, j = 1, 2, 3. (9)

We have plotted these posterior probabilities against the birth normalcy index for the 4% sample of

US births for 2002. The plot appears in panel (b) of Figure 3. The plot is revealing. At any value of

BNI, the three probabilities add to 1, i.e., p1(BNI) + p2(BNI) + p3(BNI) = 1. The major crossing

points of the probability curves are at BNI values of 1.77 for the premature and at-risk curves,

2.80 for the healthy and at-risk curves, and a further crossing of the healthy and at-risk curves at

4.70. For BNI values below 1.77, a premature birth is more probable than an at-risk birth. At

BNI values from 1.77 to 2.80, an at-risk birth is more probable than a healthy birth. These two

breakeven points bracket births that range from being severely premature to mildly premature. In

the BNI range from 2.80 to 4.70, a birth is most likely to be from the healthy category. Finally, the

probability of an at-risk birth overtakes that of a healthy birth above a BNI of 4.70. Thus, above

this highest breakeven point, there is growing risk that a birth is macrosomic. Another insight

offered by these probability plots is that the category of a birth cannot be known with certainty

from the BNI value alone, except possibly when the BNI is extremely low. A birth has a moderate

chance (.07) of being at-risk, even when the probability of a healthy birth is at its peak (.93), which

occurs at a BNI of 3.64.

Turning to the interpretation of BDI, we have already noted that it is measuring the incon-

sistency of birth weight and gestational age. Low and high percentiles (say, the 10th and 90th

percentiles) of BDI may therefore be taken as refined indicators of SGA and LGA infants. The

measures are refined in the sense that BDI is orthogonal to BNI. The BDI percentiles do not have
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to fix the value of gestational age A in order to declare a misalignment of birth weight for the

gestational age. The two percentiles of BDI used for declaring SGA and LGA births are a pair of

numbers and not bands of percentiles that vary over gestational age. For US births in 2002, for ex-

ample, the fitted non-central t-distribution in panel (b) of Table 1 has 10th and 90th percentiles of

BDI equal to 0.891 and 1.114. The percentiles are centered slightly away from 1 because the esti-

mated location parameter (`) is 1.0024. For example, consider two births with outcomes (W,A) of

(2.309, 40) and (1.497, 35). Both have the same BDI (0.798) and therefore exhibit equal degrees of

discrepancy between birth weight and gestational age. As both births lie below the 10th percentile

for BDI, they can be declared as SGA.

As a final note on interpreting the indexes, we note that if birth weight and gestational age are

perfectly aligned, i.e., W = WA, then BDI is exactly 1 and BNI can be interpreted directly as a

birth weight in kilograms. The preceding breakeven points in panel (b) of Figure 3 can then be

read off as birth weights.

4.2 Comparing Birth Outcomes in Different Reference Populations. We sometimes wish to

judge the relative healthiness of births in different reference populations or subpopulations, such

as in different ethnic subpopulations within a country (e.g., Hispanic and black populations in the

U.S.A.) or in international comparisons across countries (e.g., Bangladesh, India, Pakistan and Sri

Lanka). The BNI mean value for the healthy birth category (m1) serves as a norm or benchmark

for births in the reference population. Whitmore and Su (2007) propose a z-score for birth weights

that serves this purpose. We extend their z-score to BNI as follows:

z-score =
1

c1

(√
BNI
m1

−
√

m1

BNI

)
(10)

The healthy birth p.d.f. f1(BNI) in the BNI mixture model (8) is assumed to follow an inverse

Gaussian distribution and the assumption is supported by the fact that the mixture model fits actual

birth data very well. With plug-in estimates for parameters, the formula for the inverse Gaussian

16



s.f. in (5) can be used to make probability statements about the z-score. It also follows from (7) that

the square of the z-score is an exact chi-square random variable with one degree of freedom. As

the next illustration shows, the inverse Gaussian distribution can be used to calculate a one-sided

P-value for a BNI value, whereas the chi-square distribution can be used to compute a two-sided

P-value.

To illustrate the z-score for an international comparison, consider two countries A and B. The

mean m1 and coefficient of variation c1 for healthy births in the two countries (derived from fitted

mixture models for their national birth data) are, say, 3.30 and 0.10 for country A and 3.50 and

0.10 for country B, respectively. Consider a birth in each country that happens to have the same

BNI value of 2.892. In the U.S., a birth weight of 2.309 kilograms and a gestational age of 40

weeks, for instance, would produce this BNI value. Computing the z-score for a BNI of 2.892,

using the formula in (10), gives scores of −1.321 and −1.911 in countries A and B, respectively.

One-sided P-values for these z-scores, calculated from (5), are .102 and .031, respectively. Two-

sided P-values for these z-scores can be calculated from the χ2
1 distribution. Squaring each z-score

gives (−1.321)2 = 1.744 and (−1.911)2 = 3.652 for countries A and B. Reference to a computer

routine for the χ2
1 distribution gives two-sided P-values of .187 and .056, respectively. Note that

the two-sided P-values are not exactly double their one-sided counterparts because of the slight

skewness of an inverse Gaussian distribution. The implication of the one-sided P-values is that a

healthy birth with a BNI of 2.892 or lower will arise about once in 10 healthy births in country A

but only about once in 32 healthy births in country B. The birth outcome is therefore more outlying

in country B than country A. The fact that the z-scores are negative indicate that both births are

below the norms (3.30 and 3.50) for healthy births in their respective national populations.

Based on our finding that the BDI follows a non-central t-distribution, we can give the BDI a

corresponding t-score, as follows:
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t-score =
BDI− `

σ
(11)

For any birth, the t-score follows a t-distribution with df degrees of freedom. Computer routines

and tables for t distributions are widely available so again it is a simple matter to make probability

statements about a t-score for any reference population or subpopulation. For example, consider

a birth in the US in 2002 that has a BDI of 0.798. Panel (b) of Table 1 gives respective estimates

for `, σ and df of 1.0024, .07561 and 5.056. It follows therefore that the t-score = (.798 −

1.0024)/.07561 = −2.703. A computer routine for the t-distribution gives a probability of .021 of

obtaining this or a smaller BDI value in a randomly chosen American birth. The birth is an SGA

candidate.

4.3 Accounting for Covariate Effects on BNI and BDI. The parameters of the BNI mixture

model (8) or the non-central t-distribution for BDI can be made to depend on selected covariates

and then estimated using regression methods. We will demonstrate the regression analysis for

BNI only. For this case demonstration, we again employ the 4% systematic sample of US births

in 2002. We have selected the following three binary covariates: (1) Under 20: Age of mother,

coded 1 if the mother is under 20 years and 0 otherwise; (2) White Race: Race of mother, coded

1 if white and 0 otherwise; and (3) Vaginal Delivery: Delivery method, coded 1 if vaginal without

previous C-section and 0 otherwise. As the BNI model involves the inverse Gaussian distribution,

we use threshold regression as described in Lee and Whitmore (2006, 2010). Threshold regression

output for the BNI model with these covariates appears in Table 2. The fitted model uses the

preceding covariates for each parameter, with identity link functions for the mean parameters,

logarithmic link functions for the coefficients of variation, and logit link functions for the mixture

probabilities. Each regression function is a simple linear combination of the covariates. No account

has been taken of possible covariate interactions. The selection of covariates and the forms of the

regression functions have been kept simple so the demonstration is not too elaborate. We are aware
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that the regression model can be substantially refined.

We now comment briefly on the results in Table 2. The regression analysis involves 24 re-

gression coefficients for the three covariates. Because of the large number of parameters being

estimated, we take a regression effect to be significant only if its P-value is under .002. The param-

eter p2 does not appear in the regression table because it depends on p1 and p3 through the identity

p2 = 1− p1 − p3.

1. For premature births, the only significant regression coefficient (P < .002) for the mean m3

and coefficient of variation c3 is the positive effect of Delivery on the coefficient of variation.

All of the covariates have significant influences on the probability of a premature birth p3.

Being a teen-aged mother raises the probability of a premature birth while being a white

mother and having a vaginal delivery reduces the probability.

2. For births in the at-risk and healthy categories (j = 2 and j = 1, respectively), we see that

almost all covariates affect the means m2 and m1 and coefficients of variation c2 and c1 in a

significant way. The exceptions are Under 20 and White Race for c2 and Vaginal Delivery

for m1. The general tendency for at-risk and healthy births is for their BNI means to fall and

their coefficients of variation to increase when the mother is a teenager. The effects are in the

opposite direction for a mother being white or having a vaginal delivery, with the means and

coefficients of variation rising and falling respectively for at-risk and healthy births. None of

the covariates affects the probability of a healthy birth p1. This finding is interesting because

it says that the chance of a healthy birth is invariant but the location and relative variability

of the BNI distribution for healthy births are not.

3. The mean value of BNI for healthy births (m1) ranges from 3.29 to 3.46 over the eight

possible configurations of Under 20, White Race, and Vaginal Delivery in the sample. Cor-

respondingly, p1 ranges from 0.73 to 0.83.
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5. Concluding Discussion

An analogy can be drawn between our proposed indexes BNI and BDI and the body mass index

BMI. The BMI measures the consistency of body weight and body height. Unusually small or large

values of BMI indicate misalignments of weight and height, as occurs in obesity for example. It

follows, therefore, that our BDI is the counterpart of BMI in that it measures the extent to which

birth weight and gestational age are inconsistent. The exponent of 2 that is used for height in the

BMI is the analog of our near-cubic α exponent for gestational age A in (1). Interestingly, to our

knowledge, no analog of the BNI has been proposed for body weight and height, although our line

of development presumably could be used to derive a body mass normalcy index.

The BNI and BDI are very suitable measures for research studies that wish to capture the joint

predictive effects of birth weight and gestational age, especially where the research involves, say,

regression models with birth weight and gestational age as explanatory variables. The fact that the

logarithms of the indexes are uncorrelated implies that their regression effects will not be diluted

or distorted by multicollinearity and would be measuring independent explanatory contributions.

Our case demonstration has focused on a 4% systematic sample of US births in 2002. In

principle, our results are easily extended to all births for that year or even for multiple years. We

have reserved the application of our methods to larger data sets for a subsequent research study of

time trends in US birth patterns.
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(a)
Variable Births Mean S. D. 1st Q. Md. 3rd Q. Skew. Kurt. Min. Max.
ln(W ) 159,363 1.171 .2355 1.099 1.207 1.303 -3.344 23.74 -1.483 1.946
ln(WA) 159,363 1.171 .2355 1.121 1.205 1.287 -2.765 18.95 -1.478 1.808

(b) (c)
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Figure 1: Panel (a): Descriptive statistics for the logarithms of birth weight ln(W ) and
imputed birth weight ln(WA) = ln(κ) + α ln(A), where the constants κ and α are chosen
so the two variables have the same mean and standard deviation. Panels (b) and (c):
Histograms for ln(W ) and ln(Wa). The histograms and statistics are based on a 4%
sample of US births in 2002, excluding missing values. Birth weight is in kilograms and
gestational age in weeks.
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Birth Category j
Parameter j = 1: Healthy j = 2: At-risk j = 3: Premature
(a) Estimated Inverse Gaussian Mixture Model for BNI for the US Population
Mean (mj) 3.433 2.933 1.641
Coef. of Var. (cj) .0987 .1949 .5886
Mode (modej) 3.383 2.767 0.843
Probability (pj) .7747 .1982 .0271
Boundary (bj) 18.77 8.78 2.18
Mean drift (µj) 5.47 3.00 1.33
(b) Estimated Non-central t-distribution Model for BDI for the US Population
Parameter
Location (`) 1.0024
Scale (σ) .07561
Degrees of Freedom (df) 5.056

Table 1: (a) Fitted three-component mixture model for BNI for the US population in 2002,
based on a sample of 159,353 births. (b) Fitted non-central t-distribution for BDI for the
US population in 2002.

(a) (b)

Figure 2: Plots of the empirical c.d.f. against the fitted c.d.f. as an assessment of goodness
of fit. Panel (a): The three-component inverse Gaussian mixture model (8) for BNI. Panel
(b): The non-central t-distribution model for BDI. Differences between the empirical and
fitted c.d.f.s are almost imperceptible in both plots.
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(a) (b)

Figure 3: Panel (a): Partial probability density functions pjfj(BNI) of the BNI mixture
model, corresponding to birth categories j = 1 (healthy), j = 2 (at-risk) and j = 3 (prema-
ture). Panel (b): Probability of a given category of birth pj(BNI) at each value of BNI, for
j = 1, 2, 3.

Birth Category j = 1: Healthy j = 2: At-risk j = 3: Premature
Estimate P-value Estimate P-value Estimate P-value

mj

Under 20 -.0514 .000 -.1833 .000 -.2102 .028
White Race .1119 .000 .2122 .000 .1986 .005
Vaginal Delivery .0065 .080 .1597 .000 -.0448 .542
Constant 3.3417 .000 2.6722 .000 1.4706 .000
ln(cj)
Under 20 .1021 .000 .0461 .219 -.1026 .155
White Race -.0850 .000 -.0686 .003 -.0373 .396
Vaginal Delivery -.0810 .000 -.1076 .000 .3580 .000
Constant -2.2038 .000 -1.5116 .000 -.7134 .000
logit(pj)
Under 20 .2783 .018 .4590 .001
White Race -.1148 .112 -.5474 .000
Vaginal Delivery .1675 .011 -1.1871 .000
Constant 1.3087 .000 -1.0255 .000

Table 2: Fitted threshold regression model for BNI for the US population in 2002
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